Spin gauge fields: From Berry phase to topological spin transport and Hall effects
نویسنده
چکیده
The paper examines the emergence of gauge fields during the evolution of a particle with a spin that is described by a matrix Hamiltonian with n different eigenvalues. It is shown that by introducing a spin gauge field a particle with a spin can be described as a spin multiplet of scalar particles situated in a non-Abelian pure gauge (forceless) field U (n). As the result, one can create a theory of particle evolution that is gauge-invariant with regards to the group U (1). Due to this, in the adiabatic (Abelian) approximation the spin gauge field is an analogue of n electromagnetic fields U (1) on the extended phase space of the particle. These fields are force ones, and the forces of their action enter the particle motion equations that are derived in the paper in the general form. The motion equations describe the topological spin transport, pumping, and splitting. The Berry phase is represented in this theory analogously to the Dirac phase of a particle in an electromagnetic field. Due to the analogy with the electromagnetic field, the theory becomes natural in the four-dimensional form. Besides the general theory, the article considers a number of important particular examples, both known and new. 2005 Published by Elsevier Inc. PACS: 03.65.Vf; 72.25. b; 11.15. q; 05.60. k
منابع مشابه
Berry-phase blockade in single-molecule magnets.
We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that, in the case of incoherent spin states, it is essential to place the SMM b...
متن کاملTopological spin transport of photons: the optical Magnus effect and Berry phase
The Letter develops a modified geometrical optics (GO) of smoothly inhomogeneous isotropic medium, which takes into account two topological phenomena: Berry phase and the optical Magnus effect. Taking into account the correspondence between a quasi-classical motion of a quantum particle with a spin and GO of an electromagnetic wave in smoothly inhomogeneous media, we have introduced the standar...
متن کاملGauge fields in real and momentum spaces in magnets: monopoles and skyrmions.
Electronic states in magnets are characterized by the quantum mechanical Berry phase defined in both the real and momentum spaces. This Berry phase constitutes the gauge fields, i.e. the emergent electromagnetic fields in solids, and affects the motion of the electrons. In momentum space, the band crossings act as the magnetic monopoles, i.e. the sources or sinks of the gauge flux. In real spac...
متن کاملHall effect of spin waves in frustrated magnets.
We examine a possible spin Hall effect for localized spin systems with no charge degrees of freedom. In this scenario, a longitudinal magnetic field gradient induces a transverse spin current carried by spin wave excitations with an anomalous velocity which is caused by a topological Berry-phase effect associated with spin chirality, in analogy with anomalous Hall effects in itinerant electron ...
متن کاملPolarization transport of transverse acoustic waves: Berry phase and spin Hall effect of phonons
We carry out a detailed analysis of the short-wave semiclassical approximation for the linear equations of the elasticity in a smoothly inhomogeneous isotropic medium. It is shown that the polarization properties of the transverse waves are completely analogous to those of electromagnetic waves and can be considered as spin properties of optical phonons. In particular, the Hamiltonian of the tr...
متن کامل